

Tevatron Progress: Operational, Instabilities, and Diagnostics Update

Fermilab Seminar April 29, 2003

Mike Martens -- Operational C. Y. Tan -- Instabilities Jim Steimel -- Diagnostics

Luminosity Since June 2002

- 151 HEP stores
- 160 pb⁻¹ to each detector
- Increase in luminosity from 15e30 to 40.5e30
- Run I record of 25.0e30 broken on 7/26/2002
- Run II record of 40.5e30 set on 3/20/2003

Goals and Current Performance

	Current	FY03	
Parameter	Status	Goal	
Typical Luminosity	3.5e31	6.6e31	cm ⁻² sec ⁻¹
Integrated Luminosity	6.0	12.0	pb ⁻¹ /week
Protons/bunch	200e9	240e9	
Antiprotons/bunch	22e9	31e9	

Higher intensity \Rightarrow Fundamental physics limitations

- Beam-Beam Effects
- Instabilities
- Beam Halo and Lifetimes

Understanding/Solving these issues requires ...

- Stable Tevatron Lattice
- Diagnostics
- Study Time

Beam Intensities

Number of protons
Mostly steady
in the 200e9 range

Number of antiprotons
Increase factor of 2.5 Oct \Rightarrow March from 9e9 \Rightarrow 22e9 per bunch

Tevatron Emittance

General comments on emittance blow-up from Flying Wire measurement**

(95%, normalized emittances):

- $< 1\pi 2\pi$ at proton injection
- ~ 5π 6π at pbar injection
- < (negative) $2\pi 3\pi$ protons at 150 (scraping)
- ~ (negative) $0\pi 3\pi$ pbars at 150 (scraping)
- 4π - 7π blowup on ramp (prots and pbars)
- occasional instability, 5π 50π , at 980 GeV

** There remains uncertainty of FW emittance measurements. (See later slides)

Reasons for *I*-progress Since Jun'02

•	"Shot lattice"	AA	× 1.40
•	Pbar emittance at injection Tev/Lines		× 1.20
•	Pbar coalescing improvement	MI	× 1.15
•	Shoot from larger stacks		× 1.10
•	Improved Tev Pbar efficiency		× 1.10
•	More Protons at Low Beta		<u>× 1.10</u>
	to	tal	x 3.3

....plus additional improvements in the Tevatron:

- Tunes/coupling/chromaticities at 150/ramp/LB
- Orbit smoothing
- Longitudinal dampers to stop σ_s blowup
- Transverse dampers improves 150 Gev lifetime
- F11 vacuum

Tune/coupling/chromaticity/orbits

- Tune up is essential for consistent operations ...
 - Much effort during "Studies Periods" is actually maintenance (orbit smoothing and tune/coupling/chromaticity adjustments)
- · ... and for understanding more complicated physics
 - Beam-beam effects, instabilities and dampers, beam lifetimes, beam halo rates, etc. are more difficult to understand when machine parameters drifting.

Some troubles:

- Tune/coupling drifts at 150 Gev. (Now compensated.)
- Tune/coupling snapback on the ramp. (Now compensated.)
- Chromaticity snapback? (Was measured. Is OK.)
- Orbit drifts. (Started BPM and smoothing improvements)

Tune Drift @ 150 Gev

Tevatron Magnet Alignment

- Measured rolls of dipoles and quads during Jan 2003 shutdown.
- Used "portable tilt-meter" for quick measurements
- · Data roughly consistent with vertical dipole corrector strengths
- Dipoles rolled 4 mrad gives ~0.5 mm "scalloped" vert orbit
- Coupling from one quad rolled 4 mrad gives min tune split ~0.0025

Beam-beam Interaction As Major Factor

- Pbar transfer efficiency strongly depends on N_p, helix separation, orbits, tunes, coupling, chromaticity and beam emittances at injection
- Summary of progress with beam-beam since March 2002:

	Mar'02 *	Oct'02 **	Jan'03 ***
Protons/bunch	140e9	170e9	180e9
Pbar loss at 150 GeV	20%	9%	4%
Pbar loss on ramp	14%	8%	12%
Pbar loss in squeeze	22%	5%	3%
Tev efficiency Inj →low beta	54%	75%	75%
Efficiency AA →low beta	32%	60%	62%
* average in stores #1120-1128 *** average in stores #2114-2153	(9 stores)	** average	in stores #1832-184.

Fermilab Seminar, April 29, 2003

Tevatron Efficiencies

Beam-beam Effects: Pbar Only

Antiproton Only Store: 1% loss on ramp, τ_{150} =20 hrs, τ_{980} =160 hrs 650 8% loss on ramp -DC beam (depends 600 on MI tuneup) 550 500 450 Intensity 400 350 300 Antiproton 250 200 150 100 **IBEAM (DCCT)** 50 Narrow Gate (FBIANG) 2.0 2.5 0.5 1.0 1.5 3.0 0.0 time, hrs

Lifetime Issues at 150 Gev

Poor Pbar lifetime at 150 Gev

- Depends on emittances, N_D , ξ , and bunch number
- Lifetime $\sim 0.5-1.0 \text{ hrs} \Rightarrow \sim 3 \text{ hours}$
- Original injection helix has been modified, separation increased and optimized to fit tight CO aperture ("new-new helix")
- Replace lambertsons @ CO gain 25 mm vertically

Poor proton lifetime on helix

- depends on chromaticity
- Instability prevented lower chromaticity (now 8)
- Dampers now allow us to lower chromaticity
- Lifetime ~2 hours => ~ 3-4 hours (on a good day)

Lifetime and Chromaticity at 150 Gev

Measured loss rates as function of chromaticity (with protons on the pbar helix)

- Lower chromaticity is better for lifetime
- Instabilities appear $\xi < 3-4$
- Run with $\xi_H = 8$, $\xi_V = 8$ to avoid instabilities
- Dampers allow us to lower chromaticity and improve lifetime

Beam-beam @ Injection Vs Emittance

Attacking the Beam-beam Effects

- Smaller emittances from AA ("AA shot lattice")
- Reduced injection errors
 - Beam Line Tuner
- Better control of orbits / tunes / coupling
 - Tunes up the ramp
 - Tune and coupling drift at 150 Gev
 - Orbit smoothing
- Larger injection helix
 - CO Lambertson replacement
 - New Separator settings

Helix Improvement

Distance from BO

Aperture limitation at CO

$$S = \sqrt{(\Delta x / \sigma_x)^2 + (\Delta y / \sigma_y)^2}$$

Increasing proton/pbar helix separation

- Replace CO Lambertson with MI magnets
- Increase vertical aperture at CO from ~15mm -> 40 mm (but only ~30% larger helix due to other aperture limitations.)
- Modify helix to increase min separation, S_{min} , from 5.5 to 6.6

January 2003 Shutdown

- CO Lambertson Replacement
 - Increases aperture at CO
 - Leads to increased proton/antiproton helical orbit separation.
- Schottky monitor
 - Measure chromaticity non-destructively
 - Measure tunes of individual bunches
- CDF Shielding
 - Add steel around low beta quads.
 - Should reduce backgrounds in muon chambers by factor of 5.
- · New TEL electron gun.
 - Gaussian shaped emittance of electron beam
- Alignment Work

Tevatron Projects in FY'03

	project	Leader	Date
1	Transverse dampers	Steimel	Nov'02
1	Pbar emittance at injection: BLT,A1 line, inj.damper	Scarpine Lebedev Steimel	Nov'02 Dec'02 Feb'03
1	C0 Lambertson replacement	Garbincius	Feb'03
1	Tev Lattice (A0)	Martens	Feb'03
1	Daily operations	TeV coord	daily
1	Operational orbit smoothing	Martens	Dec'02
1	Beam-beam studies and calculations	Sen	Sep'03

Tevatron Projects in FY'03 (Cont'd)

2	Instability studies	Ivanov	Dec'02
2	150 GeV tunecoupling drift compns; b2 unwind	Martens	Oct'02
2	TEL	Shiltsev	Feb'03
2	Schottky detector at E17	Pasquinelli	Feb'03
2	Tevatron alignment	Stefansky	Mar'03
2	Longitudinal dampers	Steimel	Apr'03
3	Tevatron vacuum	Hanna	Feb'03
3	Losses/collimators	Moore	Feb'03
3	DC Beam/RF noise	Lebedev	Apr'03
3	SBD/FBI/FW (BPMs)	Pordes	Dec'02
3	SynchLite	Cheung	Dec'02
3	Chromaticity measurement	Still	Dec'02
3	Orbit motion spectrometer	Zhang	Dec'02
3	Pbar tunemeter, feedback	Tan	Mar'03